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Abstract
We study structural properties of growing networks where both addition and
deletion of nodes are possible. Our model network evolves via two independent
processes. With rate r, a node is added to the system and this node links to
a randomly selected existing node. With rate 1, a randomly selected node is
deleted and its parent node inherits the links of its immediate descendants. We
show that the in-component size distribution decays algebraically, ck ∼ k−β as
k → ∞. The exponent β = 2+ (r −1)−1 varies continuously with the addition
rate r. Structural properties of the network including the height distribution,
the diameter of the network, the average distance between two nodes and the
fraction of dangling nodes are also obtained analytically. Interestingly, the
deletion process leads to a giant hub, a single node with a macroscopic degree
whereas all other nodes have a microscopic degree.

PACS numbers: 89.75.Hc, 05.40.−a, 05.20.Dd, 02.50.Ey

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Idealized models of random networks provide an important tool for characterizing real-world
networks such as communication, infrastructure and social networks [1–3]. For example, the
emergence of hubs in heterogeneous networks can be reproduced through a ‘rich-gets-richer’
mechanism. This phenomenon arises in networks that grow via preferential attachment [4–6].

Most network growth models are based upon sequential addition of nodes and subsequent
attachment to existing nodes according to a prescribed mechanism. This framework does
not allow for removal of nodes. In reality, there are two types of networks. One type of
networks including, for example, citation networks may only expand, while another type of
networks such as friendship networks may either expand or contract. Indeed, individuals may
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join or leave a social group [7, 8]. The same is true for technological networks such as the
world-wide-web because websites may disappear.

There is substantial theoretical understanding of the structure of strictly expanding
networks, but much less is known about networks that may also contract [7–13]. In the
latter case, it is typically impossible to construct closed equations for quantities such as the
degree distribution because removal of nodes generates memory or correlations.

In this paper, we introduce a simple network growth process with addition and deletion of
nodes and show that it is possible to obtain closed equations for several structural properties
of the network. In our growing network model, nodes may be added or deleted. When a node
is added to the network, it is attached to a randomly selected existing node. When a node is
deleted, its daughters are attached to its parent. This process is relevant for phylogenetic trees,
namely trees that document the ancestries of distinct biological species [14–16] because in
the process of evolution, mutation events generate new nodes while extinction events result in
deletion of existing nodes [17–21].

We first investigate the in-component size distribution and show that this quantity obeys
a closed evolution equation. We analytically obtain many characteristics of this distribution
including the generating function, the moments and the tail behaviour. The in-component size
distribution decays algebraically and the characteristic exponent varies continuously with the
addition rate. Such behaviour is in contrast with preferential attachment networks where this
exponent is fixed.

Next, we obtain closed equations for the height distribution that characterizes the distance
between a node and the root. This distribution obeys Poisson statistics. Other structural
characteristics such as the diameter of the network and the degree of the most connected node
follow directly from this quantity. In general, deletion leads to a condensation phenomenon
where a single node is connected to a finite fraction of all nodes, while the rest of the nodes
have only a finite degree. We stress that condensation does not occur in the absence of deletion.

The rest of this paper is organized as follows. The addition–deletion process is introduced
in section 2. The in-component size distribution and related quantities such as the fraction
of dangling nodes are discussed in section 3. Next in section 4, the height distribution and
related quantities including the diameter are described. The degree distribution is analysed
using an approximate theory and numerical simulations in section 5. Section 6 contains a brief
summary. Finally, appendices A and B contain several technical derivations.

2. The addition–deletion process

In the addition–deletion process, initially there is one seed node, and then the network grows
via addition of nodes and shrinks via deletion of nodes as follows.

(1) The addition process. With rate r, a new node is added and it links to a randomly selected
node (figure 1). This is an egalitarian attachment process as the new node is equally likely
to link to any one of the existing nodes.

(2) The deletion process. With rate 1, a randomly selected node (together with its outgoing
link) is deleted. The parent of the deleted node inherits all the incoming links of the
deleted node (figure 2). This inheritance mechanism preserves ancestral relations as is
the case in phylogenetic trees: when a species goes extinct, its immediate descendants
are linked to its immediate ancestor.

We stress that the addition process and the deletion process are completely independent of
each other and that in the deletion process all links are removed with an equal probability.



Addition–deletion networks 8609

Figure 1. Illustration of the node addition process.

Figure 2. Illustration of the node deletion process.

This addition–deletion process preserves the complexity of the graph since nodes and
links are added and deleted in pairs. Thus, starting with a single-seed node and no links,
the network has a tree structure. The seed node cannot be deleted (or the ancestry would be
destroyed) and therefore, the seed is the root of the tree.

The average total number of nodes at time t, N(t), evolves according to dN/dt = r − 1.
Therefore, this quantity grows linearly with time and since N(0) = 1,

N(t) = 1 + (r − 1)t. (1)

The total number of links, L(t), follows from L = N − 1 and therefore, L(t) = (r − 1)t .
We restrict our attention to the case of growing networks, r > 1. In this case, the size of
the network increases indefinitely with time and fluctuations are negligible in the long time
limit. The total number of nodes grows diffusively and is subject to large fluctuations in the
limit r → 1.

3. The in-component size distribution

The in-component of a node n is the set of all nodes which are connected to n via a path of
directed links. In the context of a phylogenetic tree, the in-component is simply the set of all
descendants. Let Ck be the average number of nodes with an in-component of size k. In our
definition, the in-component includes the node itself, and therefore k � 1. The in-component
size distribution evolves according to

dCk

dt
= rδk,1 +

r

N
[(k − 1)Ck−1 − kCk] +

k

L
[Ck+1 − Ck] . (2)

The first three terms correspond to changes caused by node addition. New nodes generate a
new in-component of size one and thus, the first term. In-components grow by one when a
node links to any of the nodes in that in-component and the next two terms account for this
augmentation. The corresponding attachment rate is the addition rate r normalized by the
total number of nodes N. The last two terms correspond to node deletion. Deletion of any
one of the k links in an in-component of size k + 1 generates an in-component of size k and
hence the gain term. Similarly, deletion of any one of the k nodes in an in-component of size k
decreases the in-component size by one and hence the loss term. All nodes except for the root
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may be deleted and accordingly, the deletion rate is normalized by the total number of links
L. By summing equations (2) one can verify that the total number of nodes N = 1 +

∑
k�1 Ck

satisfies dN/dt = r − 1. We stress that equation (2) is exact.
We are interested in the long-time asymptotics where the difference between the total

number of nodes and the total number of links is negligible. Therefore, we replace L with N
in (2). We also make the transformation

Ck = Nck, (3)

where ck is the fraction of nodes with in-component degree equal to k and
∑

k�1 ck = 1.
We seek stationary solutions (dck/dt = 0) for which the distribution function ck satisfies the
difference equation

(r − 1)ck = r[δk,1 + (k − 1)ck−1 − kck] + k(ck+1 − ck). (4)

The tail of this distribution can be obtained using a continuum approximation, that is, through
replacement of differences with derivatives: ck+1 − ck → dc/dk, etc. This change transforms
the difference equation (2) into the differential equation

r
d

dk
(kc) − k

dc

dk
+ (r − 1)c = 0. (5)

The solution of this equi-dimensional equation is a power law

ck � Bk−β, β = 2 +
1

r − 1
, (6)

as k → ∞. Thus, the in-component size distribution has a power-law tail. The exponent
2 � β < ∞ varies continuously with the addition rate. The characteristic exponent is minimal,
β = 2, for the well-understood case of random recursive trees (r → ∞) where deletion is
irrelevant [22–27]. The exponent diverges in the more interesting limit of marginally growing
networks (r → 1) where deletion is as strong as addition.

Addition–deletion networks differ from strictly growing networks where the exponent
characterizing the in-component size distribution is independent of the details of the attachment
mechanism, β = 2 [26]. Thus the deletion process qualitatively changes the network structure.

The moments Mn = ∑
k knCk provide complementary information about the in-

component size distribution. Of course, M0 = N − 1. The first moment satisfies

dM1

dN
= r − 2

r − 1

M1

N
+

r + 1

r − 1
, (7)

as seen by summing (2). Equation (7) describes the evolution as a function of the total number
of nodes rather than time. Since we are interested in the asymptotic behaviour, we again
replace L with N in (2). Solving equation (7), we find that the first moment is proportional to
the number of nodes, M1 = (1 + r)N . Hence the average in-component size is linear in the
addition rate, 〈k〉 = 1 + r .

Similarly, the second moment obeys

dM2

dN
= 2r − 3

r − 1

M2

N
+

r + 3

r − 1

M1

N
+ 1. (8)

There are three types of asymptotic behaviour

M2 �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(r2 + 5r + 2)

2 − r
N 1 < r < 2,

16N ln N r = 2,

κN
r−2
r−1 r > 2.

(9)
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The proportionality constant κ depends on the initial conditions. These asymptotic behaviours
are consistent with the algebraic decay (6): the second moment grows linearly when β > 3, it
increases super-linearly when β < 3, and it acquires a logarithmic correction in the marginal
case β = 3.

The generating function,

F(x) =
∞∑

k=1

ckx
k, (10)

contains complete information about the in-component size distribution. Normalization
implies F(1) = 1 and since c0 = 0, then F(0) = 0. Multiplying equation (4) by xk

and summing over k, we arrive at a first-order differential equation for the generating function

(x − 1)(rx − 1)F ′(x) + (1 − r − x−1)F (x) + rx = 0, (11)

where the prime denotes differentiation with respect to x. The homogeneous part of
equation (11) admits the solution x(1 − x)β−1|rx − 1|−β . We make the transformation
F(x) = x(1 − x)β−1(rx − 1)−βa(x) when 1/r < x < 1, and then the auxiliary function
a(x) satisfies a′ = r(1 − x)−β(rx − 1)β−1. Integration of this equation yields the generating
function

F(x) = r
x(1 − x)β−1

(rx − 1)β

∫ x

1/r

dy
(ry − 1)β−1

(1 − y)β
(12)

in the range 1/r < x < 1. The lower limit of integration was chosen to assure that F(1/r) is
finite. One can verify that limx→1 F(x) = 1 in agreement with the normalization requirement.
A similar calculation gives the generating function in the range 0 < x < 1/r

F (x) = r
x(1 − x)β−1

(1 − rx)β

∫ 1/r

x

dy
(1 − ry)β−1

(1 − y)β
. (13)

The large-k behaviour is encoded in the x → 1 behaviour of the generating function.
First, we confirm the power-law tail (6) by using (12). Second, we obtain the corresponding
proportionality constant

B = �(β)(β − 1)β . (14)

The appendix details the analysis leading to this result.
Conversely, the small-k behaviour is reflected by the x → 0 behaviour of the generating

function. The fraction of dangling nodes, that is, nodes with no incoming links, is given by
c1 = limx→0 F ′(x) and by differentiation of the generating function (13) we readily find

c1 =
∫ 1

0
dy(1 − y)β−1(1 − y/r)−β. (15)

The integral can be expressed via the hypergeometric function, c1 = β−1F(β, 1;β+1; r−1), or
alternatively as the power series c1 = ∑

k�0(k + β)−1r−k . The quantity c1 is a monotonically
decreasing function of the addition rate r and is roughly linear in 1/r (figure 3). It is maximal
for marginally growing networks (see subsection A),

lim
r→1

c1 = eE1(1) = 0.596 347 . . . , (16)

where E1(x) = ∫ ∞
x

dz z−1 e−z is the exponential integral [28]. The fraction of dangling nodes
is minimal for random recursive trees, limr→∞ c1 = 1/2. In general, over half of the nodes
are dangling nodes.

The in-component size distribution can be calculated recursively for small k by using (4),
c2 = r(2c1 − 1), c3 = r[(6r + 1)c1 − (3r + 1)], etc.

We now investigate the limits r → 1 and r → ∞ in detail.
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Figure 3. The fraction of dangling nodes c1 versus inverse of the addition rate 1/r (solid line).
Also shown is the large-r asymptotic behaviour c1 = 1

2 + 1
12r

(dashed line).

3.1. Marginally growing networks

The recursion relation (4) becomes

ck+1 = δk,1 + (k − 1)ck−1 − 2kck + (k + 1)ck+1 (17)

for marginally growing networks (r → 1). Repeating the steps leading to (5) yields the
second-order linear differential equation

d2

dk2
(kc) − dc

dk
− c = 0. (18)

The tail of the in-component size distribution has a stretched exponential tail

ck ∼ k−1/4 e−2
√

k, (19)

a result that can be obtained using the WKB technique. This sharp decay is consistent with
the divergent β.

To find the generating function, we repeat the steps leading to (12). The governing
equation (11) becomes (x − 1)2F ′ − x−1F + x = 0, and the solution of this equation is
F(x) = x

1−x
e

1
1−x

∫ 1−x

0
dy

y
exp

(− 1
y

)
. The generating function can be expressed in terms of the

exponential integral

F(x) = x

1 − x
e

1
1−x E1

(
1

1 − x

)
(20)

from which the fraction of dangling nodes (16) follows.

3.2. Random recursive trees

The second limiting case, r → ∞, corresponds to random recursive trees. Now, the in-
component size distribution satisfies the recursion equation

(k + 1)ck = (k − 1)ck−1 + δk,1. (21)

Unlike in the general case, this simpler equation can be solved recursively starting at k = 1:
c1 = 1

1·2 , c2 = 1
2·3 , c3 = 1

3·4 , etc. We thus recover the well-known result [26]

ck = 1

k(k + 1)
. (22)

Alternatively, one can obtain the distribution from the generating function F(x) = 1 +
1−x
x

ln(1 − x).
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4. The height distribution

Another important structural characteristic is the height of a node, that is, the number of links
separating a given node from the root [29, 30]. Let Hk(t) be the average number of nodes
with height k at time t. This quantity evolves according to

dHk

dt
= r

N
Hk−1 +

k

L
(Hk+1 − Hk) (23)

for k � 1. The initial condition is Hk(0) = δk,0 and the boundary conditions are H0 = 1
and H−1 = 0. The first term on the right-hand side accounts for gain due to node addition
and the next two terms describe changes due to node deletion. The factor k reflects that
deletion of a node of height k reduces the heights of all of its descendants by one. Again,
the addition and the deletion rates are normalized by the total number of nodes and the total
number of links, respectively. One can verify that the total number of nodes N = ∑

kHk

satisfies dN/dt = r − 1.
Following the above analysis of the in-component size distribution, we study the long-time

asymptotic behaviour of hk , the fraction of nodes with height k, using the transformation

Hk = Nhk. (24)

Normalization implies
∑

k hk = 1 and the boundary condition is now h0 = 0 since H0 = 1.
Let us substitute (24) into the rate equation (23). The distribution function hk satisfies the
recursion relation

r(hk − hk−1) + (hk+1 − hk) = (k + 1)hk+1 − khk. (25)

This equation was obtained by adding Hk+1 to both sides of (23).
In this case, it is convenient to use the exponential generating function, defined via

G(z) =
∞∑

k=0

hk ekz. (26)

Multiplication of the recursion relation (25) by ekz and summation over k leads to the first-order
ordinary differential equation

dG

dz
= G(z)(1 + r ez). (27)

The generating function is found by integration of this equation subject to the boundary
condition G(0) = 1,

G(z) = ez+r(ez−1). (28)

Using definition (26) we find that the height distribution function is Poissonian

hk = e−r rk−1

(k − 1)!
. (29)

The moments of the height distribution mn = ∑
kk

nhk can be found by differentiation of
the generating function (28). For instance, m1 = G′(0) = 1 + r , and therefore the average
node height is equal to the average in-component size, 〈k〉 = 1 + r . Similarly, fluctuations in
the height are obtained from the second moment m2 = c′′(0) = r2 + 3r + 1, and hence, the
variance is

〈k2〉 − 〈k〉2 = r. (30)

This variance is sufficient to characterize the behaviour in the vicinity of the average, where
the Poissonian height distribution becomes Gaussian.
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We can immediately deduce a number of characteristics using the height distribution.
There are Hk nodes at height k with incoming links from the Hk+1 nodes at height k + 1. Thus,
the average in-degree Ik of nodes at height k is Ik = Hk+1/Hk . Using H0 = 1 and (29) we find

Ik =
{

N e−r k = 0;
rk−1 k > 0.

(31)

The second result shows that the average degree is inversely proportional to the height.
The root, with its macroscopic degree, is the most connected node whereas all other

nodes have a microscopic degree. Hence, the root is a giant hub. The degree of the root is
maximal for marginally growing networks, limr→1I0 = N e−1, and it decreases indefinitely
as r increases. Therefore, deletion must be responsible for these condensation phenomena.
Indeed, since the attachment rate to each node is 1/N , addition can be responsible for at most
ln N of the N e−r connections as is the case for random recursive trees [24–26]. We conclude
that emergence of the giant hub is due to deletion.

Consider now the highest node. The maximal height kmax is determined from the extreme
statistics criterion Hkmax ∼ 1. Using the Poisson distribution (29) and the Stirling formula
k! ∼ (k/e)k , the highest node grows very slowly with the network size, kmax ≈ ln N/ln(ln N).
Remarkably, the maximal height is independent of the addition rate r.

Asymptotically, the diameter of the network D is twice the maximal height

D ≈ 2
ln N

ln(ln N)
. (32)

For strictly growing random trees, the diameter exhibits a logarithmic growth independent
of the attachment mechanism, D ∼ ln N [26]. However, the diameter can be affected by
the topology. If every new node links to m existing nodes, this strictly growing network is
no longer a tree (for m � 2) and D ∼ ln N/ ln ln N . This result [31] is again very robust,
namely it holds for strictly growing networks with reasonable attachment mechanisms and
for all m � 2. Equation (32) shows that deletion qualitatively affects the growth of the
diameter. Surprisingly, despite their distinct topologies these strictly growing networks and
the addition–deletion networks have similar diameters.

Finally, we address the average distance between two nodes, 〈l〉. Since the degree of the
root is proportional to the total number of nodes N, a path connecting two randomly selected
nodes almost surely includes the root. As a result, the average distance is asymptotically equal
to twice the average height 〈l〉 = 2(1 + r).

5. The degree distribution

In contrast with the in-component size distribution and the height distribution, it is impossible
to construct closed equations for the degree distribution and we perform an approximate
analysis.

When a node with in-degree j is deleted, the in-degree of the parent i is augmented
by j − 1. This is simply the aggregation process [32]

(i, j)
i/(NL)−→ i + j − 1. (33)

The aggregation rate is proportional to the in-degree of the parent node because any of the
daughter nodes can be deleted. The normalization factor NL reflects that the probability of
picking the deleted node is inversely proportional to the number of nodes and the probability
of picking the parent node is inversely proportional to the number of links.
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Let Ak(t) be the average number of nodes with in-degree k at time t (the out-degree
is always one). The total number of nodes and the total number of links are given by
N = ∑

kAk and L = ∑
kkAk , respectively. Assuming that the degrees of neighbouring nodes

are completely uncorrelated, the quantity Ak obeys the nonlinear rate equation [33, 34]

dAk

dt
= rδk,0 +

r

N
(Ak−1 − Ak) +

1

NL

⎡
⎣ ∑

i+j=k+1

iAiAj − (kN + L)Ak

⎤
⎦ . (34)

The initial condition is Ak(0) = δk,0 and the boundary condition is A−1(t) = 0. The first three
terms represent addition events. These terms are linear and thus exact. The last three terms
account for deletion events. These terms are nonlinear as they represent two node interactions.
Moreover, the gain term has a convolution structure, reflecting the aggregation process (33).
Of course, the aggregation process becomes exact in the limit r → ∞ where deletion becomes
irrelevant. By summation of the rate equation (34) we recover dN/dt = dL/dt = r − 1.

Following our above analysis, we study the fraction of nodes with in-degree k, ak . Making
the transformation Ak = Nak , the degree distribution satisfies

(k + 2r)ak = rδk,0 + rak−1 +
∑

i+j=k+1

iaiaj . (35)

We analyse this hierarchy of equations using the generating function U(x) = ∑
k akx

k . The
normalizations

∑
kak = ∑

kkak = 1 imply U(1) = U ′(1) = 1. By multiplying the recursive
equations (35) by xk and summing over k, we find that the generating function obeys the
nonlinear ordinary differential equation

(x − U)
dU

dx
= r(x − 2)U + r. (36)

This equation is consistent with the normalization conditions U(1) = U ′(1) = 1.
The moments of the degree distribution defined by mn = ∑

k akk
n are obtained by

successive differentiation of the generating function. In particular, the high-order moments
grow rapidly although they do remain finite (appendix B)

mn ∼
[

r

(r − 1)2

]n

(n!)2, (37)

as n → ∞. Using these asymptotics we deduce (see appendix B) that the tail of the degree
distribution decays as a stretched exponential

ak ∼ e−λ
√

k (38)

with λ = [2(r − 1)]/
√

r .
How well does this approximation compare with addition–deletion networks? In addition–

deletion networks, the root has a macroscopic degree. In other words, it is a condensate that
contains a finite fraction of all nodes. In the aggregation process (33) all clusters are finite,
as seen from U ′(1) = ∑

k kak = 1 [34]. This is a consequence of the fact that all nodes are
treated in the same way. Introducing a fixed node that cannot be deleted should significantly
improve the approximation.

We also examined the degree distribution using Monte Carlo simulations of the
aggregation process (33) and the addition–deletion process. We find that when the degree
is very small, the aggregation process approximates the addition–deletion process very
well (figure 4). For small degree this agreement holds independent of r. However, this
approximation is poor when the degree is large.
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Figure 4. The degree distribution for the aggregation process and for the addition–deletion network.
Shown are results of one Monte Carlo simulation run with 107 nodes and r = 4. Roughly 90% of
the nodes have a degree smaller or than k = 10.
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Figure 5. The tail of the degree distribution for the addition–deletion network. The simulation
results were obtained from 103 independent realizations in a network with 107 nodes and r = 4.
The decay exponent is γ = 2.45 ± 0.05.

For addition–deletion networks, the degree distribution follows a power-law behaviour
(figure 5)

ak ∼ k−γ (39)

as k → ∞. Our approximate approach neglects degree–degree correlation. The fact that our
approximate approach is accurate at small degrees but inaccurate at higher degrees indicates
that degree–degree correlations are negligible for small degrees but substantial for large
degrees. Indeed, highly connected nodes are long lived and thus involve strong memory.

Addition–deletion networks can be simulated using an efficient algorithm that is linear in
the network size. Throughout the growth process we keep track of all nodes, whether they
have been deleted (passive nodes) or not (active nodes). In an addition event, an active node
is added and it links to a randomly selected active node. In a deletion event, an active node is
marked passive. When the required network size is reached, passive nodes are removed in a
reverse chronological order to preserve the ancestral relations.

Simulations of the aggregation process are performed as follows. The system consists of
aggregates, each with a given size. In an addition step, an aggregate of size zero is added and
simultaneously, the size of another, randomly chosen aggregate increases by 1. In a deletion
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step one aggregate is chosen with probability proportional to its size and it merges with another
randomly chosen aggregate according to (33).

6. Summary

We have studied networks which undergo a biased growth—new nodes are added at a certain
rate and old nodes are deleted at a smaller rate in such a way that the ancestry is preserved.
This growing network model is relevant to biological and technological networks that preserve
ancestral relations between nodes. Our main conclusion is that it is possible to characterize
the structure of such networks analytically. For instance, the in-component size distribution
has a power-law tail and the characteristic exponent varies continuously with the addition rate.
We have also shown that the height distribution obeys Poisson statistics. Additional properties
including the fraction of dangling nodes and the average degree as a function of height have
been obtained as well.

Interestingly, the addition–deletion process results in a giant hub that is connected to a
finite fraction of the nodes in the system. This fraction decreases to zero as deletion becomes
weaker, showing that the deletion process causes these condensation phenomena.

We have also seen that the degree distribution evolves by an aggregation process since the
parent node inherits all incoming links of a deleted node. Treating the underlying aggregation
process as completely random is valid only at small degrees because degree–degree correlations
become significant at large degrees. Constructing closed equations for this aggregation process
from which the degree distribution can be calculated is an outstanding challenge.
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Appendix A. Derivation equation (14)

The tail of the in-component size distribution can be obtained from the x → 1 asymptotics of
the generating function F(x). Let us consider, for example, the power-law tail ck � Bk−2 as
k → ∞. In this case, the leading behaviour of the derivative of the generating function is

dF(x)

dx
=

∑
k

kckx
k−1 � B

∑
k

k−1xk = −B ln(1 − x)

in the limit x → 1. Generally, the power-law decay (6) implies

dβ−1F(x)

dxβ−1
= −B ln(1 − x) (A.1)

as x → 1, for any positive integer β.
To evaluate this derivative, we rewrite the generating function (12) using the

transformation z = (β − 1)(1 − y)

F (x) = rβ x(1 − x)β−1

(rx − 1)β

∫ 1

(β−1)(1−x)

dz
(1 − z)β−1

zβ
. (A.2)

For an arbitrary positive integer β, the integral is evaluated by performing β successive
integration by parts

F(x) = xPβ−1(x)

(rx − 1)β
+ (−r)β

x(1 − x)β−1

(rx − 1)β
ln(1 − x), (A.3)

where Pn(x) is a polynomial of degree n.
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Differentiating the generating function (A.3) β − 1 times and noting that the second term
dominates in the x → 1 limit, we obtain

dβ−1F(x)

dxβ−1
� −(β − 1)!

(
r

r − 1

)β

ln(1 − x). (A.4)

By comparing this expression with (A.1) we obtain the coefficient B = �(β)(β − 1)β for all
integer β � 2. Finally, we use analytic continuation and extend this result to arbitrary β.

Appendix B. Derivation of (37) and (38)

We obtain the large-k behaviour of the degree distribution using the x → 1 behaviour of the
generating function U(x). Differentiating equation (36) n times and setting x = 1 gives a
recursion relation for the derivatives Un = dnU(x)/dxn|x=1

Un = rn(n + r)

(r − 1)2
Un−1 +

1

r − 1

n−3∑
m=2

(
n

m

)
Un−mUm+1.

The first two coefficients are U0 = U1 = 1. Only the first term in the recursion equation is
relevant asymptotically and therefore,

Un

Un−1
→ r

(r − 1)2
n2 (B.1)

as n → ∞. Equation (37) is obtained by noting that the coefficients

Un =
∑
k�0

k(k − 1) · · · (k − n + 1)ak

are asymptotically equivalent to the moments, Un ∼ mn.
The large-n behaviour of mn is computed as follows:

mn ∼
∫

dk knak

∼
∫

dk exp(n ln k − λ
√

k)

∼ exp[2n ln(2n/λe)]

∼
(

2

λ

)2n

(n!)2. (B.2)

In the first line we replaced the summation by integration, and in the second we used the
presumed asymptotic ak ∼ e−λ

√
k . The third line was obtained by using the steepest descent

method—the function f (k) = n ln k − λ
√

k is maximal at k∗ = (2n/λ)2. The fourth line
was obtained using the Stirling formula n! ∼ (n/e)n. Finally, by comparing equations (B.2)
and (37), we obtain the tail behaviour (38)3.
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